
CS 161 Design and Analysis of Algorithms
Ioannis Panageas

Lecture 19
 P and NP

Lecture Outline
• Different types of problems

 Tractable vs intractable
 Solvable vs unsolvable
 Decision problems
 P and NP

• Polynomial-time reduction
• NP-completeness, NP-hardness

2

Different time complexities
Different algorithms can have different time complexities.

We say an algorithm runs in polynomial time if its time
complexity is at most 𝑂(𝑛𝑐) for some constant 𝑐.

3

Some common complexity classes Notation (input size = 𝑛)

Constant 𝑂(1)

Logarithmic 𝑂(log𝑛)

Linear 𝑂(𝑛)

Log-linear 𝑂(𝑛 log𝑛)

Quadratic 𝑂(𝑛2)

Cubic 𝑂(𝑛3)

Exponential 𝑂(𝑒𝑛)

Factorial 𝑂(𝑛!)

Doubly-exponential 𝑂(𝑒𝑒
𝑛
)

Polynomial
time

Exponential time
We say an algorithm runs in exponential time if its time
complexity is at most 𝑂(𝑒𝑛𝑐) for some constant 𝑐.

Question: Can you see why 𝑒𝑒𝑛 is not 𝑂(𝑒𝑛𝑐) for any constant 𝑐?

Challenge: Explain why 𝑛! is 𝑂(𝑒𝑛2), but 𝑛! is not 𝑂(𝑒𝑛)?
4

Some common complexity classes Notation (input size = 𝑛)

Constant 𝑂(1)

Logarithmic 𝑂(log 𝑛)

Linear 𝑂(𝑛)

Log-linear 𝑂(𝑛 log𝑛)

Quadratic 𝑂(𝑛2)

Cubic 𝑂(𝑛3)

Exponential 𝑂(𝑒𝑛)

Factorial 𝑂(𝑛!)

Doubly-exponential 𝑂(𝑒𝑒
𝑛
)

Exponential
time

Tractable problems
Given a problem , there could be many possible solutions, with
possibly different time complexities.
• We say can be solved in exponential time if has at least

one algorithmic solution that runs in exponential time.
• We say can be solved in polynomial time if has at least

one algorithmic solution that runs in polynomial time.

Definition: A tractable problem is a problem that can be solved
in polynomial time.
• In this course so far, we have seen many tractable problems:

 Sorting problem
 Single source shortest path problem
 Etc.

5

Intractable problems
An intractable problem is a problem that cannot be solved in
polynomial time.
• This is a very strong condition!
• A problem, without any known solution that is able to run in

polynomial time, may not necessarily be intractable.
 Perhaps someone smart enough would one day be able to come up

with a solution that runs in polynomial time.

• An intractable problem is a problem that is guaranteed to have
no possible solutions that runs in polynomial time.

There are many problems that we suspect are intractable, but
we still cannot rule out the existence of solutions (still not yet
discovered) that run in polynomial time.

6

Why we care about polynomial time
A general philosophy in Computer Science:
• Computational problems that cannot be solved in polynomial

time are “hard problems”.
 “hard” in the sense that it is hard to complete the computation in a

reasonable amount of time.

• This philosophy is called the “Cobham thesis”
 “Cobham” sounds like “call-berm”.

Intuition for tractable versus intractable problems
• Problem A takes 100𝑛3 steps to solve, for an input of size 𝑛.
• Problem B takes 0.01 × 2𝑛 steps to solve, for an input of size 𝑛.
• If each step takes one microsecond (1 millionth of a second), then

for an input of size 100, Problem A takes 1.67 minutes to solve,
while Problem B takes roughly 402 trillion years to solve.

7

The game of Go
A two-player board game played on a 19 × 19 board.

• This problem has been proven to be intractable.

8

Problem:
Given a configuration of
pieces on the Go board, in
which the white player has
the next turn, determine
whether it is possible for the
white player to force a win.
• This is a yes/no problem.

The traveling salesman problem
Problem: The traveling salesman problem
Given a list of cities and the distances between each pair of cities,
what is a shortest possible route that visits each city exactly once
and returns to the origin city?

This problem is suspected to be not solvable in polynomial time.
• We still do not know whether the problem is tractable or

intractable.

9

• If there are n cities, then the “best” known
solution uses dynamic programming and
has time complexity 𝑂(𝑛22𝑛).

• “best” solution ≈ brute-force search +
dynamic programming

Unsolvable problems?
Question: Are there unsolvable computational problems?

There are examples of unsolvable problems.
• The most famous one is called the halting problem.

The Halting Problem:
Given a computer program 𝑃 and some input 𝐼, determine whether
𝑃 will terminate when executed with input 𝐼.
• This is a yes/no problem. The answer to the halting problem is

either yes or no.
 Yes, if 𝑃 terminates.
 No, if 𝑃 runs forever (e.g. enters an infinite loop).

• If 𝐼 is not a valid input for 𝑃, then 𝑃 executed with input 𝐼 will
terminate with an error message.

10

Understanding the halting problem
The Halting Problem: Given a computer program 𝑃, and an input
𝐼, determine (yes or no) whether the program will terminate
when executed with input 𝐼.
• Consider the following Python functions.

• funcOne runs forever if 𝑥 > 0, and terminates if either 𝑥 ≤ 0
(returns 𝑥) or 𝑥 is not a numerical input (returns error).

• funcTwo always terminates and returns the value 16.
• funcThree always terminates with a syntax error message.

11

def funcOne(𝑥):
while 𝑥 > 0:
𝑥 ← 5

return 𝑥

def funcThree(𝑥):
print(“Hello World)
print(“This code is correct”

def funcTwo(𝑥):
𝑥 ← 2
while 𝑥 < 10:
𝑥 ← 𝑥2

return 𝑥

Understanding the halting problem
Suppose the halting problem can be solved, i.e. there is an
algorithm 𝐡𝐚𝐥𝐭(𝑃, 𝐼) that takes in any program 𝑃 and any input 𝐼,
and gives an output either true or false.
• Output true represents “yes, program terminates on 𝐼”, output
false represents “no, program does not terminate on 𝐼”.

Examples:

• 𝐡𝐚𝐥𝐭 funcOne, 7 = false (runs forever).

• 𝐡𝐚𝐥𝐭 funcTwo, 5 = true (terminates and returns value 16).

• 𝐡𝐚𝐥𝐭 funcThree, 99 = true (terminates with syntax error).

12

def funcOne(𝑥):
while 𝑥 > 0:
𝑥 ← 5

return 𝑥

def funcThree(𝑥):
print(“Hello World)
print(“This code is correct”

def funcTwo(𝑥):
𝑥 ← 2
while 𝑥 < 10:
𝑥 ← 𝑥2

return 𝑥

Why the halting problem is unsolvable
We have assumed that the halting problem is solvable, which
means there is an algorithm 𝐡𝐚𝐥𝐭(𝑃, 𝐼) that solves the problem.

Key Idea: Consider the following Python function.

Question: What is the output of funny(funny)?
• If 𝐡𝐚𝐥𝐭 funny, funny = true, then when running funny(funny), we

enter the ‘if loop’ and loop forever, which means the program funny
does not terminate when executed with input funny, so by the
definition of 𝐡𝐚𝐥𝐭, we conclude that 𝐡𝐚𝐥𝐭 funny, funny = false.

• If 𝐡𝐚𝐥𝐭 funny, funny = false, then when running funny(funny),
we do not enter the ‘if loop’, which means the program funny
terminates when executed with input funny, so by the definition of
𝐡𝐚𝐥𝐭, we conclude that 𝐡𝐚𝐥𝐭 funny, funny = true.

13

def funny(𝑃):
if 𝐡𝐚𝐥𝐭 𝑃, 𝑃 then:
loop_forever()

Different kinds of problems

14

SOLVABLE

PROBLEMS

SOLVABLE IN POLYNOMIAL TIME

(these are the tractable problems)

P

EXP

SOLVABLE IN

EXPONENTIAL TIME

Go

problem
Sorting

problem

PROBLEMS

Halting

problem

Useful terminology (P and EXP)
We say a problem is in P if it can be solved in polynomial time.
• E.g. the sorting problem is in P.
• E.g. the single source shortest path problem is in P.
• The notation P refers to the class of all problems that are solvable

in polynomial time, i.e. the class of tractable problems.
 Note: This class P consists of problems, not solutions or algorithms.

We say a problem is in EXP if it can be solved in exponential time.
• E.g. the Go problem is in EXP, and not in P.
• E.g. the sorting problem is in EXP (and in fact in P).
• E.g. the traveling salesman problem is in EXP, but we do not know

whether it is in P or not in P.
• Note: The class P is a subclass of EXP.

 Any problem in P is also a problem in EXP.

15

Decision Problems

16

Decision problems
A problem is called a decision problem if its solution has two
possible outcomes
• Either “Yes” or “No”.
• Either “True” or “False”.
• Either 1 or 0.
• Either “Accept” or “Reject”
• ..
Examples of decision problems:
• Go problem

 The white player can force a win: Yes or No?

• Halting problem
 Program 𝑃 will terminate when executed with input 𝐼: Yes or No?

17

Optimization problems
A problem is called an optimization problem if we want to find a
“best” solution, given some input, and some constraints that the
solution must satisfy. (There may be more than one “best” solution.)

Examples of optimization problems:
• Single source shortest path problem
 Find a shortest path from a source vertex to each other vertex.

• Longest common subsequence problem
 Find a longest common subsequence of two given sequences.

• 0/1 Knapsack problem
 Choose a subset of items so that their total value is maximized, while still

satisfying the constraint that their total size doesn’t exceed max capacity.

• Traveling salesman problem
 Find a shortest route that visits each city exactly once and returns to the

origin city.
18

Converting into decision problems
An optimization problem can be converted into a decision problem.
• Instead of finding a “best” solution, we are also given a candidate

solution, and our goal is to decide whether the candidate solution is
a “best” solution.

Examples of “converted” decision problems:
• Single source shortest path decision problem

 The given candidate path is a shortest path: Yes or No?

• Longest common subsequence decision problem
 The given candidate common subsequence is an LCS : Yes or No?

• Knapsack decision problem
 The given candidate subset of items has maximized total value: Yes or No?

• Traveling salesman decision problem
 The given candidate route is a shortest route: Yes or No?

19

Solving “converted” decision problems
Key Insight:
If we have a solution to an optimization problem, then we can
use this solution to solve the “converted” decision problem.

Example: Traveling salesman problem
• Suppose we know how to solve the traveling salesman problem.
• This means we have an algorithm to find a shortest route that visits

each city exactly once and returns to the origin city.
 (Remember, there could be more than one possible shortest route.)

• This means any other shortest route must have the same total
distance as the shortest route you have found from your algorithm.

• Solving the decision problem: Given a candidate solution (some
proposed route), we can then compute its total distance, and check
if the value equals the total distance of your shortest route found.

20

Traveling salesman decision problem
Problem: We have a list of cities and the distances between every
pair of cities. Suppose we are given a particular route that visits
each city exactly once and returns to the origin city. Does this
route have the shortest distance, among all such possible routes?

Verifying a “no” answer:
• If we can find another route whose distance is strictly smaller than

the distance of the given route, then we can immediately verify that
the “no” answer is indeed correct.

Verifying a “yes” answer:
• We need to confirm that every other possible route has a distance

that is NOT strictly smaller than the distance of the given route.

21

Solving the Go problem
Go Problem: Given a configuration of pieces on the Go board, can
the white player force a win? Yes or No?
Closely related problem: Given a configuration of pieces on the
Go board, find all possible endgames that can be obtained from
the given configuration.

(An endgame configuration is one where there are no more valid moves.)

• To solve the original Go problem, we could first solve the closely
related problem, i.e. list all possible endgames, then check which
player wins in each endgame.

• How to verify a “no” answer to the Go problem?
We only need to find just one endgame in which the black player wins.

• How to verify a “yes” answer to the Go problem?
We have to check that in every possible endgame, white player always wins.

22

How do we show a problem is not in P?
Recall: When we say a problem is not in P, we mean that any
possible solution, even those not yet discovered, cannot possibly
run in polynomial time.
• How can we prove that a problem is not in P?

 In other words, how can we prove that a problem is intractable?

• Short answer: For many problems, we don’t know how!

Current Status: We do not know of any general method that
works on all problems, that can prove that a problem is not in P.
• In fact, we do not even know of any general method that can

prove that a problem is not solvable in linear time.
• However, for some specific problems (e.g. the Go problem), we

are able to prove that they are intractable.
23

Verification algorithms
Decision Problem: Decide if input 𝐼 satisfies a set of conditions.
Question: How do we verify an answer to the decision problem?
• An algorithm to verify an answer is called a verification algorithm.
• We can have two verification algorithms.

 One verification algorithm to verify that a “yes” answer is correct.
 One verification algorithm to verify that a “no” answer is correct.

A verification algorithm takes in two inputs 𝐼 and 𝐸.
• 𝐼 is the given input to the decision problem.
• 𝐸 represents “evidence” that we provide to the algorithm.

 If 𝐸 is sufficient “evidence”, then the algorithm outputs 1 (“accept”),
and we say that 𝐸 is a certificate for the verification algorithm.

 If 𝐸 is insufficient “evidence”, then the algorithm outputs 0 (“reject”).

24

Example: The partition problem
Problem: Given a set of integers 𝑆, determine (yes/no) if 𝑆 can be
partitioned into two subsets 𝐴 and 𝐵, such that the integers in
each of 𝐴 and 𝐵 have exactly the same sums.
Observation: If the input set is 𝑆 = {1,2,4,6,7}, then one possible
certificate for a “yes” answer to this decision problem is the pair
𝐴 = {1,2,7} and 𝐵 = {4,6}.
• We can check that indeed 1 + 2 + 7 = 4 + 6, so we can verify

that the answer to the decision problem is indeed “yes”.
Note: A certificate is not a direct answer “yes” or “no”.
• Instead, a certificate is “enough information” so that you can

verify for yourself the answer for the given input set 𝑆.
• If instead we are given the pair 𝐴 = {1,2,4} and 𝐵 = {6,7},

then this pair is not a certificate for any of the two answers.
25

Certificates of a decision problem
Decision Problem: Decide if input 𝐼 satisfies a set of conditions.
Solution Strategy: Consider two verification algorithms, one to
verify that a “yes” answer is correct, and another to verify that a
“no” answer is correct.
• For each possible input 𝐼, we want to find a certificate that can

verify the correct answer.
Example: Traveling salesman decision problem
• One possible certificate for a “no” answer is a route whose distance

is strictly smaller than the distance of the input route 𝐼.
• One possible certificate for a “yes” answer is a list of every possible

route that visits each city exactly once and returns to the origin city.
Example: Go problem
• One possible certificate for a “no” answer is an endgame

configuration (obtainable from the input configuration 𝐼) for which
the black player wins.

26

Verifying a “yes” answer to the Go problem
Go Problem: Input = given configuration, Output = Yes/No.
• To verify that a “yes” answer to the Go problem is correct, we need

to check all endgames obtainable from the given configuration.
• If 𝑛 is the number of remaining vacant positions in the given

configuration, then the number of such possible endgames is at
least Ω(𝑒𝑛). (There are exponentially many endgames to check.)

Even if we already have the list of all endgames, we still need to go
through every endgame and check that the white player wins.
• Fact: It has been proven that any certificate to verify a “yes” answer,

no matter how it is encoded, would have a size at least Ω(𝑒𝑛).
Even with any theoretically “fastest” verification algorithm to verify
a “yes” answer, we still need to process the entire certificate, so
the time complexity for verification must be at least Ω(𝑒𝑛).

27

Non-deterministic algorithms
and NP problems

28

Guessing solutions to a problem
Decision problem: Given input 𝐼, does there exist an outcome 𝐸
(dependent on 𝐼) that satisfies some given constraints? Yes or no?
• (e.g. Partition problem: Given an input set 𝐼, does there exists a

partition 𝐸 of 𝐼 into two subsets with the same sum? Yes or no?)
Consider a verification algorithm 𝑨(𝐼, 𝐸) that verifies a “yes” answer to
this decision problem. (i.e. output = 1 for “yes”, output = 0 for “inconclusive”)

A different strategy for solving a decision problem:
1) Randomly generate a valid outcome 𝐸 for 𝑨(𝐼, 𝐸).
2) Compute the value of 𝑨(𝐼, 𝐸).
3) If 𝑨 𝐼, 𝐸 = 1, then return “yes” as the solution to the decision

problem. Otherwise, go back to Step 1.
Note: Once we have found some 𝐸 such that 𝑨 𝐼, 𝐸 = 1, then this 𝐸
is a certificate for a “yes” answer to the decision problem.

29

(guessing)

(verifying the guess)

Solving the partition problem by guessing
Partition problem: Given an input set 𝐼, does there exists a partition 𝐸
of 𝐼 into two subsets with the same sum? Yes or no?
• Suppose we are given the input set 𝐼 = {1,3,4,5,6,7}.
Let 𝑨(𝐼, 𝐸) be a verification algorithm to verify a “yes” answer.
Guessing potential certificates:
1) Randomly generate a valid outcome 𝐸 for 𝑨(𝐼, 𝐸).
2) Compute the value of 𝑨(𝐼, 𝐸).
3) If 𝑨 𝐼, 𝐸 = 1, then return “yes”; Otherwise, go back to Step 1.

Best case scenario: If the first randomly generated 𝐸 consists of 𝐴 =
3,4,6 , 𝐵 = {1,5,7}, then we can check that 𝐴 and 𝐵 have the same

sums, conclude that 𝑨 𝐼, 𝐸 = 1, and return “yes”.
Worst case scenario: If each randomly generated 𝐸 keeps on yielding
𝑨 𝐼, 𝐸 = 0, then the process does not end.

30

(guessing)

(verifying the guess)

(a lucky guess)

(bad guesses one after another)

Non-deterministic algorithms
A non-deterministic algorithm for verifying a “yes” answer:
Input: 𝐼
1) Randomly generate a valid outcome 𝐸 for 𝑨(𝐼, 𝐸).
2) Compute the value of 𝑨(𝐼, 𝐸).
3) If 𝑨 𝐼, 𝐸 = 1, then return “yes”; Otherwise, go back to Step 1.

• An algorithm is called non-deterministic if it is possible to have
different behaviors on different runs, even for the same input 𝐼.

• In contrast, an algorithm is called deterministic if it behaves exactly
the same on different runs, for the same input 𝐼.

Important Remark:
Step 1 is usually “fast”, so in the best case scenario, the time complexity
of this non-deterministic algorithm depends on the time complexity of
Step 2, i.e. the verification of a certificate for a “yes” answer.

31

(guessing)

(verifying the guess)

What is NP?
A decision problem is said to be in class NP if there is at least one
non-deterministic algorithm that is able to verify a “yes” answer
to the decision problem, such that in the best case scenario, this
non-deterministic algorithm runs in polynomial time.
• NP ≈ solvable in Non-deterministic Polynomial time.
• “problem in NP” = “problem in class NP” = “NP problem”.

Another equivalent definition for NP
A decision problem is in NP if for every input whose corresponding
correct answer should be “yes”, there is a certificate for a “yes” answer
that can verified in polynomial time.
• Important Note: NP does not say anything about the verification of

a “no” answer. NP only concerns the verification of a “yes” answer!
A problem can be in NP and still potentially take a “very long time” to verify a
“no” answer. So it is possible that even in the best case scenario (first guess is a
certificate), with a theoretically “best” verification algorithm, the verification of a
“no” answer still does not complete in polynomial time.

32

Intuition for NP
For a decision problem, we need to decide whether the correct answer
is “yes” or “no”, given some input 𝐼.
• Whatever answer that we decide, we have to verify that our answer

is indeed correct. One way is to provide a certificate that can verify
our answer.

Suppose we are only interested in verifying a “yes” answer.

We say that the decision problem is in NP if we can guess a certificate
for a “yes” answer, such that it takes polynomial time to verify that
your guess indeed certifies that the correct answer should be “yes”.
• Guessing is a non-deterministic process, that’s why NP stands for

“Non-deterministic Polynomial time”. We can verify a “yes” answer
non-deterministically in polynomial time.

33

NP: Polynomial time in terms of what?
Consider a decision problem. (Input = 𝐼, Output = yes/no)
• Assumptions:

 Input 𝐼 requires 𝑛 bits of memory for storing it.
 Correct answer for decision problem with input 𝐼 is “yes”.

We say that the decision problem is in NP to mean the following:
 There is a “short” certificate 𝐸 for a “yes” answer to the decision

problem with this given input 𝐼.
 This certificate 𝐸 is “short”, meaning that it requires at most 𝑂(𝑛𝑐)

bits of memory for storing it, for some constant 𝑐.
 Verifying this “short” certificate takes polynomial time, i.e. there is

some verification algorithm 𝑨, such that running 𝑨(𝐼, 𝐸) would take
at most 𝑂(𝑛𝑐) steps, for some constant 𝑐.

Note: By considering “polynomial time” in terms of the number of bits
required to store the input, the class NP becomes much more general
and includes many interesting decision problems.

34

An example of an NP problem
Fact: The partition problem is in NP.
• Problem: Given an input set 𝐼 of non-negative integers, determine

(yes/no) if 𝐼 can be partitioned into two subsets of equal sums.
Example: Consider 𝐼 = {1,3,4,5,6,7}.
• Suppose 𝐼 requires n bits of memory for storing it.

 If we consider each element of 𝐼 as an 8-bit unsigned integer, then we can
store 𝐼 as an array that takes up 6 × 8 = 48 bits of memory.

• A certificate for a “yes” answer to the partition problem with input
set 𝐼 is the partition consisting of two subsets {3,4,6} and {1,5,7}.
 We can store this certificate as a list consisting of two arrays, each with three

8-bit unsigned integers. Hence, storing this list takes 𝑂(𝑛) bits of memory.

• The verification of this certificate involves computing the two sums
3 + 4 + 6 and 1 + 5 + 7, and comparing if the two sums have equal
values. This verification process takes 𝑂(𝑛) steps.

35

Class NP for non-decision problems
So far: We have defined NP for decision problems.
Question: What about problems that are NOT decision problems?
• Recall: We have seen how optimization problems can be converted

into decision problems.
• More generally, any computational problem can be “converted” into

a decision problem.
 The goal of any computational problem is to compute “something”

that satisfies certain given conditions, based on some input. The
output of the computational problem is this “something”.

 We can convert the computational problem into a decision problem
that takes some input “thing”, and the goal is to determine (yes or no)
if this “thing” satisfies the given conditions.

 For example, if “thing” = “something”, then the answer is “yes”.

36

General definition: We say that a problem is in NP if its “converted”
decision problem is in NP.

Why NP problems are important
There are numerous computational problems that are important,
but seem to be intractable.
• Various areas: Computer science, optimization, applied math,

computational biology, economics, finance, etc.
• They seem intractable because the best known algorithmic solutions

to these problems do not run in polynomial time, despite decades of
hard work by the brightest minds to find efficient solutions.

• For many problems, we still cannot rule out the possibility of
polynomial time solutions, waiting to be discovered.

Many of these seemingly intractable problems are in fact NP problems!
• Even though these problems take a long time to solve, checking if a

possible solution is indeed a correct solution, is fast.
• If a problem is in NP, then in principle, we know that we can guess

solutions, and still solve the problem quickly, provided we are
“lucky” in guessing. (If a problem is not in NP, then good luck..)

37

Polynomial-time reductions

38

The idea of reductions
There are so many different computational problems that we
may want to solve.
• These problems can seem very different! Do we have to solve every

single one of these problems from scratch?

Key Idea of reductions
Given a Problem A that we want to solve, and suppose there is another
Problem B that we already know to solve.
• Suppose we can reformulate Problem A to “look like” Problem B, so

that by starting with a solution to Problem B, we are able to solve
Problem A.
 This reformulation could be as simple as a change in notation, or it could be

an algorithmic process to use computed solutions to Problem B, do further
computations, so as to generate one or more solutions to Problem A.

• Then we say that we have reduced Problem A to Problem B.
39

How do reductions work?
Assumptions: We have two problems 𝑨 and 𝑩.
• Problem 𝑨: We want to design an algorithm to solve it.
• Problem 𝑩: We already know an algorithm for solving it.

• F: An algorithm that transforms an input for Problem 𝑨 to an
input for Problem 𝑩.

• F-1: An algorithm that transforms a solution to Problem 𝑨 to a
solution to Problem 𝑩.

• Using F and F-1, we have reduced Problem 𝑨 to Problem 𝑩.

40

Q
Algorithm for

solving 𝑩F

Algorithm for solving 𝑨

input 𝑋
to 𝑨

input 𝑌
to 𝑩

𝑩(𝑌)
F-1

𝑨(𝑋)

Example: Reduction of the partition problem
Fact: The partition problem can be reduced to the knapsack problem.
• Partition problem: Given a set 𝑆 of integers, can we partition 𝑆 into

two subsets whose elements have equal sums?
• Knapsack problem (L11.02): Given a knapsack of maximum capacity

𝑚, and given 𝑛 items to choose from to put inside the knapsack,
where the 𝑖-th item has size 𝑠𝑖 and value 𝑣𝑖, find the maximum total
value possible of the chosen items, so that their total size is ≤ 𝑚.

41

𝑆 = {1,3,4,5,6,7}

𝐴 = {3,4,6} 𝐵 = {1,5,7}

𝐴 and 𝐵 have equal sums.

reduction

Example: Reduction of the partition problem
Input to the partition problem: A set 𝑆 = {𝑎1, … , 𝑎𝑛} of integers.
First observation: If 𝑎1, … , 𝑎𝑛 do not add up to an even integer, then
the answer to the partition problem is “no”.
• Remaining case: 𝑎1 +⋯+ 𝑎𝑛 = 2𝑘 for some integer 𝑘.
Reformulation of the partition problem: Is there a subset 𝑇 ⊆ 𝑆 such
that the integers in 𝑇 add up to 𝑘?
• If reformulated problem has answer “yes”, then 𝑆 can be partitioned

into two subsets 𝑇 and 𝑆\𝑇, each with the same sum 𝑘.
• Conversely, if partition problem has answer “yes”, then either of the

two subsets can be a certificate for the reformulated problem.
 “yes” to reformulated problem if and only if “yes” to partition problem.

Question: Can you see how this reformulated partition problem can be
viewed as a knapsack problem?

42

Example: Reduction of the partition problem
Reformulated partition problem: Is there a subset 𝑇 ⊆ 𝑆 = {𝑎1, … , 𝑎𝑛}
such that the integers in 𝑇 add up to 𝑘?

Key Idea: Consider the knapsack problem with maximum capacity 𝑘,
and 𝑛 items, such that the 𝑖-th item has size 𝑠𝑖 = 𝑎𝑖 and value 𝑣𝑖 = 𝑎𝑖.
• Our goal for this knapsack problem is to find the maximum possible

total value of any subset of the 𝑛 items that does not have a total
size exceeding 𝑘.

Two possibilities:
• If this maximum possible total value is 𝑘, then we can find a subset

of {𝑎1, … , 𝑎𝑛} whose sum is exactly 𝑘.
• If this maximum possible total value is < 𝑘, then every possible

subset of {𝑎1, … , 𝑎𝑛} whose sum is ≤ 𝑘 must have a sum < 𝑘.
Conclusion: By solving this knapsack problem, we can solve the
reformulated partition problem, and thus solve the partition problem.

43

Polynomial-time reductions
Assumptions: We have two problems 𝑨 and 𝑩.
• Problem 𝑨: We want to design an algorithm to solve it.
• Problem 𝑩: We already know an algorithm for solving it.

• We use F and F-1 to reduce Problem 𝑨 to Problem 𝑩.

44

Definition: If both algorithms F and F-1 run in polynomial time,
then we say that the reduction of Problem 𝑨 to Problem 𝑩 is a
polynomial-time reduction.

Q
Algorithm for

solving 𝑩F

Algorithm for solving 𝑨

input 𝑋
to 𝑨

input 𝑌
to 𝑩

𝑩(𝑌)
F-1

𝑨(𝑋)

Polynomial-time reductions are important
If there is a polynomial-time reduction of Problem 𝑨 to a known
tractable Problem 𝑩, then Problem 𝑨 is tractable!

• So we can solve a seemingly “hard” problem by finding a
polynomial-time reduction to an “easier” problem we already
know how to solve.

Such polynomial-time reductions are very common, so we have
the useful notation 𝑨 ≤𝑝 𝑩 to mean there is polynomial-time
reduction from Problem 𝑨 to Problem 𝑩.
• If 𝑨 ≤𝑝 𝑩 and 𝑩 ≤𝑝 𝑨, then we write 𝑨 ≅𝑝 𝑩.

45

Q
Algorithm for

solving 𝑩F

Algorithm for solving 𝑨

input 𝑋
to 𝑨

input 𝑌
to 𝑩

𝑩(𝑌)
F-1

𝑨(𝑋)

Polynomial-time reductions: Consequences
Suppose 𝑨 and 𝑩 are problems such that 𝑨 ≤𝑝 𝑩.
• If 𝑩 is in P, then 𝑨 is also in P.
• Contrapositive: If 𝑨 is not in P, then 𝑩 is also not in P.

 Indeed, if 𝑨 is not solvable in polynomial time, then 𝑩 cannot possibly
be solvable in polynomial time, otherwise we can combine such a
polynomial time solution for 𝑩 with the polynomial-time reduction to
get a polynomial time algorithm that solves 𝑨.

• If we believe that 𝑨 is intractable, then we should also believe
that 𝑩 is also intractable.

Intuition: 𝑨 ≤𝑝 𝑩 means that 𝑩 is “at least as hard as” 𝑨.
• After all, if we have reason to believe that 𝑨 is “hard” (intractable),

then we should also believe that 𝑩 is also “hard” (intractable).
• We have a reduction of 𝑨 to 𝑩, so if we are stuck after the reduction

(i.e. stuck at solving 𝑩), then solving 𝑩 is at least as hard as solving 𝑨.
46

Hardness of a problem
Suppose 𝑩 is a problem that you think is intractable.
• No matter how you try, you cannot think of any algorithmic

solution to 𝑩 that runs in polynomial time.
To convince someone else (e.g. your boss) that 𝑩 is indeed likely
to be intractable, you need to provide more evidence.
• If you can find a polynomial-time reduction of some well-studied

problem 𝑨 to your problem 𝑩, such that no known solution of 𝑨
runs in polynomial time, then your reduction is strong evidence that
your problem 𝑩 is indeed likely to be intractable.

• After all, if your boss thinks that 𝑩 is in P, then 𝑨 must also in P.
Intuition: 𝑨 ≤𝑝 𝑩 means that 𝑩 is at least as “hard” as 𝑨, so if all
the researchers (over many decades of work) have found 𝑨 to be
likely intractable, then 𝑩 is also likely to be intractable.

47

What is NP-hard?
A problem 𝑩 is said to be NP-hard if every problem 𝑨 in NP has a
polynomial-time reduction to 𝑩.
• Note: A deterministic algorithmic solution for 𝑩 can be used as

a subroutine to solve every problem in NP deterministically.

Intuition: If we can find a deterministic algorithmic solution for 𝑩
that runs in polynomial time, then this solution can be used to
design a polynomial time algorithmic solution for every problem
in NP. Therefore, solving an NP-hard problem should be “hard”.

48

Q
Algorithm for

solving 𝑩F

Algorithm for solving any NP problem 𝑨

input 𝑋
to 𝑨

input 𝑌
to 𝑩

𝑩(𝑌)
F-1

𝑨(𝑋)

What is NP-complete?
A problem is said to be NP-complete if it is both an NP problem
and an NP-hard problem.
• NP ≈ solvable in non-deterministic polynomial time
• NP-hard ≈ at least as hard as every NP problem
Intuition: An NP-complete problem is a “hardest” problem in NP.
Theorem (Cook–Levin, 1971): The SAT problem is NP-complete.
(This was the first time ever that a problem was shown to be NP-complete.)

49

)()()()(321321321321 xxxxxxxxxxxx

• SAT (Satisfiability): given a boolean formula, can you make
it TRUE;

There are many NP-complete problems!
• Some examples of NP-complete problems:

 SAT problem, 3-SAT problem, graph coloring problem, 4-way matching
problem, vertex cover problem, Hamiltonian path problem, longest
path problem, clique problem, independent set problem,
multiprocessor scheduling problem, max-cut problem, quadratic
programming, integer linear programming, etc.

 These are all the joint “hardest” problems in NP.

• For many decades, nobody has found a polynomial time
algorithm to solve any of these NP-complete problems.

Important Note: A polynomial time algorithm to solve just one
NP-complete problem would imply polynomial time algorithms to
solve all NP-complete problems.

50

P versus NP problem

51

The P versus NP problem
The P versus NP problem: Is P = NP?
• Most famous unsolved problem in computer science!
• The Clay Mathematics Institute (based in the United States)

offers a prize of US$1 million for anyone who can solve this
“P versus NP problem”.

Understanding the problem:
P = set of all problems solvable in (deterministic) polynomial time
NP = set of all problems solvable in non-deterministic polynomial time
Technicality: To have a fair comparison, the input size of problems in P should be in
terms of the number of bits used to store the input, just like in the case of NP.

Fact: P ⊆ NP.
• For any problem in P, there is by definition a polynomial time

algorithm to solve the problem, so we can go ahead and solve the
problem in polynomial time, and use this solution to verify any
certificate for a “yes” answer to the “converted” decision problem.

52

Remarks on the P versus NP problem
Intuition: P represents a set of relatively easy problems, while NP
includes some very hard problems.
Case: P ≠ NP
• Consequence: NP-complete problems are indeed intractable!
• Philosophical implication: Solving hard problems is harder than

verifying solutions to hard problems.
Case: P = NP.
• Philosophical Implication: All the seemingly hard problems

(including the long list of NP-complete problems) actually have
relatively easy solutions that have eluded humans for decades!

• Practical consequences (if an explicit polynomial time algorithm is found):
 Efficient solutions for all NP-complete problems
 Cryptographic hashing will no longer be secure.

53

So, what do you think?
P = NP or P ≠ NP?

(Or do you think the P versus NP
problem is unsolvable?)

54

